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ABSTRACT: Thunderstorm mode strongly impacts the likelihood and predictability of tornadoes and other hazards, and
thus is of great interest to severe weather forecasters and researchers. It is often impossible for a forecaster to manually
classify all the storms within convection-allowing model (CAM) output during a severe weather outbreak, or for a scientist
to manually classify all storms in a large CAM or radar dataset in a timely manner. Automated storm classification tech-
niques facilitate these tasks and provide objective inputs to operational tools, including machine learning models for pre-
dicting thunderstorm hazards. Accurate storm classification, however, requires accurate storm segmentation. Many storm
segmentation techniques fail to distinguish between clustered storms, thereby missing intense cells, or to identify cells em-
bedded within quasi-linear convective systems that can produce tornadoes and damaging winds. Therefore, we have devel-
oped an iterative technique that identifies these constituent storms in addition to traditionally identified storms. Identified
storms are classified according to a seven-mode scheme designed for severe weather operations and research. The classifi-
cation model is a hand-developed decision tree that operates on storm properties computed from composite reflectivity
and midlevel rotation fields. These properties include geometrical attributes, whether the storm contains smaller storms or
resides within a larger-scale complex, and whether strong rotation exists near the storm centroid. We evaluate the classifi-
cation algorithm using expert labels of 400 storms simulated by the NSSL Warn-on-Forecast System or analyzed by the
NSSL Multi-Radar/Multi-Sensor product suite. The classification algorithm emulates expert opinion reasonably well (e.g.,
76% accuracy for supercells), and therefore could facilitate a wide range of operational and research applications.

SIGNIFICANCE STATEMENT: We have developed a new technique for automatically identifying intense thunder-
storms in model and radar data and classifying storm mode, which informs forecasters about the risks of tornadoes and
other high-impact weather. The technique identifies storms that are often missed by other methods, including cells em-
bedded within storm clusters, and successfully classifies important storm modes that are generally not included in other
schemes, such as rotating cells embedded within quasi-linear convective systems. We hope the technique will facilitate
a variety of forecasting and research efforts.

KEYWORDS: Classification; Convective storms; Decision trees

1. Introduction

a. Motivation for storm classification algorithms

Storm mode features prominently in many thunderstorm
research and forecast applications. The primary processes
driving storm behavior can often be confidently inferred from

the storm morphology manifested in radar and satellite imag-
ery, or visually. For example, the propagation and strength of
a quasi-linear convective system (QLCS) is typically governed
largely by a systemwide cold pool (e.g., Weisman and Rotunno
2004), and supercells are largely governed by their mesocy-
clone (e.g., Lemon and Doswell 1979). These governing pro-
cesses, in turn, strongly modulate storm predictability, with
modes characterized by greater organization (e.g., QLCS,
supercells) tending toward higher predictability than disorga-
nized modes (e.g., ordinary cells). Storm mode also correlates
with the predictability of particular hazards, including severe
hail, severe wind, and tornadoes (e.g., Lakshmanan and Smith
2009; Brotzge et al. 2013), and to the relative likelihood of
these hazards (e.g., Andra et al. 2002; Gallus et al. 2008; Duda
and Gallus 2010; Smith et al. 2012, 2013). For example, a
QLCS is less likely than a supercell to produce a significant
[i.e., (E)F21] tornado (e.g., Trapp et al. 2005), and the timing

Flora’s current affiliation: Cooperative Institute for Severe and
High-Impact Weather Research and Operations, University of
Oklahoma, and NOAA/OAR/National Severe Storms Laboratory,
Norman, Oklahoma.

Miller’s current affiliation: Earth Systems Science Interdisciplin-
ary Center, and NOAA/National Environmental Satellite Data and
Information Service/Center for Satellite Applications and Research,
University of Maryland, College Park, College Park, Maryland.

Corresponding author: Corey K. Potvin, corey.potvin@noaa.gov

DOI: 10.1175/JTECH-D-21-0141.1

Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

P O T V I N E T A L . 999JULY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/15/22 05:03 PM UTC

mailto:corey.potvin@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


and location of tornadogenesis is generally more uncertain in
a QLCS than in a supercell. Given the strong relationships
between storm mode and essential aspects of storm behavior,
mode is one of the primary storm characteristics that forecast-
ers evaluate when predicting storm evolution and severe
weather potential, researchers consider when compiling cases
for study, and field campaign planners consider when design-
ing storm observing strategies.

Given the relevance of storm mode to so many aspects of
convective meteorology, storm classification techniques are a
critical tool for both forecast operations and research. Real-
time classification of storm mode in convection-allowing model
(CAM) output can provide valuable guidance to forecasters, es-
pecially when the output is too large to be thoroughly examined
in real time. Moreover, storm classifications could be a valuable
input to machine learning models that provide forecast guid-
ance on storm hazards, longevity, and other attributes tied to
storm mode. When instances of a particular storm mode are
sought in large sets of idealized simulations or real-world fore-
casts, automated methods enable the identification of many
more cases than could be identified manually (Lakshmanan
and Smith 2009). Therefore, classification algorithms facilitate
studies of various important topics, including how storm mode
distributions vary with mesoscale environment, how particu-
larly hazardous modes (e.g., supercells) vary with climate, and
the accuracy with which CAMs predict different storm modes.
Finally, objective techniques are necessary for reproducible
research.

b. Storm segmentation and classification algorithms

Before storms can be classified, they must first be detected
and characterized. While it is useful to distinguish between
these two tasks}storm segmentation and classification}the
two are (ideally) linked. The storm segmentation algorithm
should be designed with the storm classification criteria in mind.
For example, to classify QLCSs by the nature of their stratiform
region (e.g., Parker and Johnson 2000), the storm segmentation
algorithm should accurately identify QLCS stratiform regions,
and not solely QLCS convective lines. In the technique pre-
sented herein, the output of the storm classification algorithm
informs the quality control within the storm segmentation algo-
rithm, and so the two tasks are especially coupled.

Designing an objective storm segmentation technique that
performs well over a range of convective scenarios is challeng-
ing. Two of the greatest obstacles are the tendency for storms
to occur in close proximity to one another (e.g., in the case of a
recently split supercell), and for convective systems to contain
convective cells that the developer wishes to identify. While it is
typically easy to visually distinguish between individual storms
in such cases, it is difficult to design an objective procedure that
reliably does so because there is no single reflectivity (or reflec-
tivity gradient) threshold that demarcates the boundaries of all
storms. Using a lower reflectivity threshold allows more storms
to be correctly identified, but also increases false identifications
and inflates the areas of intense storms. Conversely, using a
higher threshold reduces spurious detections and produces
smaller storm objects, but causes more storms to be missed.

Several methods have been developed to address this and
other limitations of fixed-threshold storm segmentation techni-
ques. The Storm Cell Identification and Tracking algorithm
(Johnson et al. 1998) uses multiple reflectivity thresholds to
identify more intense cells embedded within convective sys-
tems. The enhanced Thunderstorm Identification, Tracking,
and Nowcasting algorithm (Dixon and Wiener 1993; Han et al.
2009) uses multiple reflectivity thresholds as well as erosion (an
image processing operation) to separate falsely merged objects.
Lakshmanan and Smith (2009) introduced a multiscale cluster-
ing technique that enables segmentation of storm objects at dif-
ferent scales, including individual storm cells embedded within
mesoscale convective systems. Lack et al. (2010) developed a
multiscale version of the Procrustes object-oriented verification
scheme (Micheas et al. 2007) that achieves the same objective.
Lakshmanan et al. (2009) developed the enhanced watershed
method for storm segmentation and noted the possibility of
implementing a hierarchical version that saves storm objects de-
tected with successive saliency criteria and hysteresis levels.
Flora et al. (2021) used a two-pass version of the enhanced wa-
tershed method in their creation of ensemble storm track
objects.

There is no universal set of storm mode classification crite-
ria. How best to categorize and define storm modes depends
upon the application (e.g., distinguishing severe from nonse-
vere storms; subcategorizing QLCS by stratiform characteris-
tics), input data (e.g., radar or rainfall observations; model
output), and whether a subjective or objective approach is
used. Thus, a variety of storm classification criteria have been
developed (Table 1). Classification criteria can be qualitative
(e.g., long line of storms) or quantitative (e.g., line of storms
. 100 km long), and often reference properties derived from
radar reflectivity data (e.g., contiguous region of composite
reflectivity . 40 dBZ exceeds 100 km in length). Process-
based criteria are also sometimes used; for example, QLCS
classification could require strong evidence of the existence of
a systemwide cold pool. While such criteria are useful in con-
ceptual definitions of storm modes or in a modeling frame-
work, some are not generally applicable to real storms due to
observing network limitations.

Storm classification criteria, including those adopted herein,
have typically been tuned through trial and error. Supervised
machine learning approaches automate this process by training
the classification model on sets of storms with associated mode
labels (e.g., Gagne et al. 2009; Lack and Fox 2012; Jergensen
et al. 2020). We briefly discuss the tradeoffs between the man-
ual and machine learning approaches to storm classification
model development in section 5.

Storm segmentation algorithms often compute various mor-
phological properties of the detected storms (e.g., aspect ratio,
orientation, eccentricity) that can be used by storm classification
schemes. We note, however, that storm segmentation has many
applications besides storm classification. Initial storm detection
algorithms were primarily oriented toward real-time tracking,
characterization, and nowcasting of storms in radar data (e.g.,
Dixon and Wiener 1993; Johnson et al. 1998). A more recent
application of storm segmentation is the calculation of storm
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properties for input to machine learned severe weather prediction
models (e.g., Gagne et al. 2017; Lagerquist et al. 2017; Cintineo
et al. 2018; Burke et al. 2020; Flora et al. 2021). Storm segmenta-
tion methods (in combination with object matching techniques)
have also enabled powerful new ways to verify and compare
CAM representation and prediction of storms and near-storm

environments (e.g., Skinner et al. 2018; Potvin et al. 2019, 2020;
Johnson et al. 2020; Lawson et al. 2021; Miller et al. 2022).

c. Overview of this study

Inspired by previous multiscale storm segmentation meth-
ods, we have designed an iterative technique to identify storm

TABLE 1. Sampling of previous storm classification schemes.

Study Application Data inputs Primary storm modes

Bluestein and Jain (1985) Characterization of QLCS
modes, environments

WSR-57 reflectivity scans
(photographs viewed with
time-lapse projector)

Broken line, back building,
broken areal, embedded
areal

Steiner et al. (1995) Distinguish convective vs
stratiform precipitation

Doppler C-band reflectivity
scans

Precipitating convection,
precipitating stratiform

Parker and Johnson (2000) Characterization of QLCS
modes, environments

Base radar reflectivity Trailing stratiform, leading
stratiform, parallel
stratiform

Baldwin et al. (2005) Automated classification of
rainfall systems

NCEP Stage IV hourly
precipitation estimates

Convective linear, convective
cellular, stratiform

Trapp et al. (2005) Tornadic mode climatology Composite reflectivity (CREF) Discrete cell, QLCS, other

Gagne et al. (2009) Machine learning (ML)
classification of storm mode

Simulated and observed
reflectivity (4 km AGL)

Cells: isolated cells, isolated
strong cells, multicells;
linear systems: parallel,
leading, trailing stratiform

Duda and Gallus (2010) Severe weather mode
climatology

CREF; Mesocyclone
Detection Algorithm
(Stumpf et al. 1998)

Isolated cells, cell clusters,
broken lines; squall lines
with parallel, leading,
trailing, or no stratiform
region; bow echo; nonlinear
convection; supercell

Smith et al. (2012) Tornadic and significant
severe mode climatology

Volumetric reflectivity and
radial velocity; mesocyclone
nomograms (Andra 1997)

QLCS: line, bow echo;
supercell: discrete, in
cluster, in line;
disorganized: discrete, in
line, cluster; linear hybrid;
marginal supercell

Lack and Fox (2012) ML classification of storm
mode

CREF; Rapid Update Cycle
(RUC; Benjamin et al.
2002) environmental fields

Airmass storm, pulse storm
(severe potential); small-
scale rotating storm}with
or without severe potential;
linear convective
system}with or without
rotation; supercell

Starzec et al. (2017) Improve upon traditional
convective–stratiform
classification

Volumetric reflectivity and
dual-polarimetric variables

Convection, convective
updraft, precipitating
stratiform, nonprecipitating
stratiform, ice-only anvil

Jergensen et al. (2020) ML classification of storm
mode

Multiyear Reanalysis of
Remotely Sensed Storms
(Ortega et al. 2012); RUC
proximity soundings

Supercell, QLCS, disorganized
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cells embedded within larger-scale systems, and to better
delineate between clustered storms (section 3). The segmen-
tation technique uses the simpler, fixed-threshold (rather than
the enhanced watershed) approach (the motivation for this
choice is explained in section 3b), and operates solely on the
composite reflectivity (hereafter CREF) field, which is rou-
tinely available for both model and observed storms. The
storm mode classifier operates on attributes of the reflectivity
objects and on cyclonic rotation objects generated from either
the 2–5 km AGL updraft helicity (hereafter UH) field for
CAM storms, or the 2–5 km AGL azimuthal shear product in
the NSSL Multi-Radar/Multi-Sensor (MRMS; Smith et al.
2016) suite for observed storms. The classification model is a
hand-developed decision tree. The storm modes in our classi-
fication scheme were selected to support a breadth of opera-
tional and research activities involving intense convection, but
especially efforts within the NOAA Warn-on-Forecast (WoF;
Stensrud et al. 2009, 2013) program. We developed and tested
our technique using the WoF System (WoFS; Wheatley et al.
2015; Jones et al. 2016; Lawson et al. 2018) ensemble forecasts
and MRMS data generated during the 2017–20 NOAA Haz-
ardous Weather Testbed Spring Forecasting Experiments
(SFEs; Gallo et al. 2017; Clark et al. 2020). Both the WoFS
and MRMS products used for testing have 3-km grid spacing.

To evaluate the classification algorithm, we developed an on-
line survey to collect expert storm mode labels for use as
“truth” (section 4). Each survey question presents a storm ran-
domly selected from the WoFS or MRMS output and asks the
respondent to select among the seven storm modes in our classi-
fication scheme. Preliminary versions of the survey were com-
pleted by several of the coauthors, whose responses and
subsequent feedback were used to refine the storm mode clas-
ses and definitions, the storm segmentation and classification
algorithms, and the survey design. The final surveys were com-
pleted by 30 experts, the majority of which are NWS forecasters,
who collectively labeled 200 WoFS and 200 MRMS storms.
Comparing the expert- and algorithm-assigned storm mode la-
bels reveals that the classification algorithm is reasonably accu-
rate, and works well for both MRMS and WoFS storms. Thus,
the classification algorithm could be used to facilitate a range of
endeavors leveraging CAM and gridded radar datasets.

2. WoFS and MRMS datasets

The WoFS is an experimental convection-allowing (3-km
grid spacing) ensemble designed to provide thunderstorm haz-
ard guidance at short (e.g., 0–6-h) lead times. The WoFS uses
the Advanced Research version of the Weather and Research
Forecast Model (WRF-ARW; Skamarock et al. 2008). Radar
and satellite data are assimilated every 15 min and conventional
observations every hour using an ensemble Kalman filter. The
WoFS uses 36 ensemble members for data assimilation, and
the first 18 of those members to generate 3- or 6-h lead time
forecasts after each data assimilation cycle. During the SFEs,
the WoFS domain is daily centered in collaboration with the
NOAA Storm Prediction Center on a region forecast to experi-
ence severe weather. The size of the WoFS domain was
750 km3 750 km during the 2017 SFE and 900 km3 900 km in

subsequent SFEs. The present study uses 1-h WoFS forecasts ini-
tialized hourly from 1900 to 0300 UTC during the 2017–20 SFEs.
The CREF field output by each WoFS member is the col-
umn maximum of the reflectivity calculated by the NSSL
two-moment microphysics scheme (Mansell et al. 2010),
which includes both graupel and hail categories. Addi-
tional WoFS details are found in Miller et al. (2022) and
references therein.

The MRMS system includes severe weather, transportation,
and precipitation products that leverage forecast model data
and observations from the WSR-88D radar network and satel-
lite, lightning, and conventional platforms. The MRMS CREF
product used herein is the column maximum of the exponen-
tial inverse-distance-weighted average of the reflectivity from
each contributing radar (Smith et al. 2016). The 2–5 km AGL
layer maximum cyclonic azimuthal shear (hereafter AzShr) is
computed as in Mahalik et al. (2019). Both products were gen-
erated at NSSL using the version 12 MRMS codebase. The
MRMS CREF and AzShr fields are interpolated from their
native 0.5- and 1-km grids, respectively, to the 3-km WoFS
grid.

3. Storm identification and classification algorithm

a. Overview of the classification scheme

We designed our set of storm mode classes with a variety of
operational and research applications in mind. These applica-
tions are primarily oriented toward severe thunderstorm
hazards (tornadoes, large hail, and damaging wind), and so
we chose to identify and classify convective, and not strati-
form, precipitation regions, and to distinguish between orga-
nized and disorganized convection (Table 2). We seek to
identify QLCS convective lines (QLCS), supercells (SUPER-
CELL), supercell clusters (SUP_CLUST), and intense but
nonmesocyclonic cells (ORDINARY). Since QLCS severe
weather potential is often maximized within line-embedded
cells, we also identify those cells and classify them as mesocy-
clonic or nonmesocyclonic (QLCS_MESO and QLCS_ORD,
respectively). Finally, we define a catch-all class, OTHER,
that encompasses all storms that do not exhibit one of the pre-
vious six modes.

Our classification criteria involve only radar-derived fields and
their model counterparts, namely, CREF and either 2–5 km
AGL UH (WoFS) or 2–5 km AGL AzShr (MRMS). We could
have included environmental criteria as have some machine
learned classification models (e.g., Gagne et al. 2009; Lack and
Fox 2012; Jergensen et al. 2020), but chose instead to limit the re-
quired inputs for the algorithm to maximize usability. In addition,
given the large overlap in environments for different storm
modes, we were concerned about unduly biasing the classification
algorithm toward the optimal environments for particular modes
(especially since one of the intended applications of the algo-
rithm is to analyze relationships between storm mode and envi-
ronment). As we will show in section 4, the classification
algorithm performs quite well with just the CREF and midlevel
rotation fields.
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b. Motivation for iterative storm segmentation procedure

The simplest way to detect storms in 2D gridded reflectivity
data is to identify grid cells exceeding a prescribed intensity
threshold (e.g., 40 dBZ), then identify connected regions of
those grid cells, then identify those regions exceeding a pre-
scribed area threshold (e.g., 100 km2). Prior to imposing the
area threshold, objects whose minimum boundary separation
falls below a prescribed distance limit (e.g., 10 km) can be
merged to ensure identification of convective systems whose
reflectivity falls below the intensity threshold between convec-
tive cores. Additional criteria can be imposed; for example, a
minimum threshold on the maximum reflectivity within the
object (e.g., 45 dBZ).

The watershed transform (Roerdink and Meijster 2001) is a
popular image processing technique that improves upon the
above “fixed-threshold” approach by simultaneously applying
a range of intensity thresholds. The traditional watershed
transform, however, does not work well for meteorological
image segmentation (Lakshmanan et al. 2003). The enhanced
watershed transform introduced by Lakshmanan et al. (2009)
redefines saliency}the criterion used in watershed methods
to retain potential objects, or “basins”}in terms of basin area
in order to provide direct control over the minimum size of
identified objects. While the fixed-threshold approach could
simply be iterated for different intensity thresholds, the en-
hanced watershed transform is far more efficient for big-data
applications.

While the enhanced watershed transform is a particularly
sophisticated approach to storm segmentation, the fixed-
threshold approach has also proven effective for identifying
potentially high-impact discrete cells and convective systems
in MRMS and CAM CREF data (Skinner et al. 2018). The
success of the simpler approach is due to the fact that a single
reflectivity intensity threshold identifies such storms in most
meteorological scenarios. Both approaches, however, fail to
identify cells embedded within convective systems or that lie
in close proximity to one another since each grid cell can be
assigned to at most a single object. Addressing this limitation
requires a hierarchical approach that allows smaller objects to
be identified within larger ones, and that retains both sets of
objects.

Both the fixed-threshold or enhanced watershed methods
can be made hierarchical in a conceptually straightforward
way. In either case, the original procedure must be iterated
using different object segmentation thresholds and saving the
objects from every iteration. Since multiple objects corre-
sponding to the same storm can be identified in different iter-
ations, criteria are required to identify probable duplicates
and select a single object for retention. While the enhanced
watershed transform would likely be needed for applications
seeking to identify a broad spectrum of convective storms
(i.e., including weak storms that are unlikely to imminently
produce severe weather), we are exclusively interested in
identifying intense storms; therefore, we have developed an
iterative version of the simpler, fixed-threshold, approach.

c. Initial storm objects and rotation objects

The first step of our object segmentation algorithm (Fig. 1)
approximately follows the method of Skinner et al. (2018).
For both WoFS and MRMS output, we binarize the CREF
field on a prescribed threshold: 43 and 39 dBZ, respectively.
These thresholds and all the other storm segmentation param-
eters listed herein were empirically tuned using numerous
cases from the 2017–20 SFEs. Upon binarizing the CREF
field, the Python Scikit-image module (Van der Walt et al.
2014) is used to identify and label storm objects. Then storm
objects with area ,135 km2 are discarded. Next, objects
whose boundaries lie within 9 km of one another are merged
(i.e., assigned the same label). Finally, storm objects whose
gridpoint-maximum intensity does not exceed a threshold}45
and 41 dBZ for WoFS and MRMS objects, respectively}are
discarded. These thresholds approximate the 99th percentiles
computed from the full WoFS and MRMS datasets. Using
both a segmentation and maximum-intensity threshold (e.g.,
43 and 45 dBZ for WoFS) rather than a single, higher seg-
mentation threshold (e.g., 45 dBZ for WoFS) allows us to dis-
card large storms that nevertheless lack an intense updraft.

After the initial storm object segmentation, the objects are
classified using their morphological attributes (Fig. 2a), which are
computed by Scikit-image. Most of these classifications are sub-
ject to change in the final classification phase (Figs. 2b,c), which
occurs after the final iteration of the segmentation–classification

TABLE 2. Storm modes in the 7-class scheme.

Class Description

ORDINARY Single storm cell lacking sustained intense rotation; not embedded in QLCS convective line (see
QLCS_MESO); may be embedded in QLCS stratiform region or be one of a cluster of storms

SUPERCELL Single storm cell containing sustained intense rotation; not embedded in QLCS convective line (see
QLCS_MESO); may be embedded in QLCS stratiform region or be one of a cluster of storms

QLCS Convective line of a quasi-linear convective system that exhibits systemwide organization
SUP_CLUST Multiple storms in close proximity, of which two or more are supercells; not a QLCS
QLCS_ORD QLCS-line-embedded cell lacking sustained intense rotation
QLCS_MESO QLCS-line-embedded cell containing sustained intense rotation (either a supercell, or a mesovortex-

bearing cell)
OTHER Cluster of ordinary cells (or one ordinary cell and one supercell), or a convective segment lacking

systemwide organization, or noncanonical storm mode (e.g., amorphous blob of convection not
associated with a single strong updraft)
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procedure (section 3e). Single-cell storm objects identified dur-
ing the preliminary classification and final multicellular clas-
sifications (Figs. 2a,b), hereafter “CELLs,” are ultimately
classified as SUPERCELL, ORDINARY, QLCS_MESO,
or QLCS_ORD (Fig. 2c).

To later distinguish between storms with and without strong
sustained rotation (i.e., SUPERCELL versus ORDINARY,
and QLCS_MESO versus QLCS_ORD), 30-min composite ro-
tation objects are created from the instantaneous UH and
AzShr fields valid every 5 min (Fig. 1). Exceedance thresholds
of 50 m2 s22 and 0.004 s21 are used; these approximate the

99.95th percentiles of each respective field. Rotation objects
whose boundaries lay within 3 km of each other are merged.
Objects are discarded if they are smaller than 45 km2 or
were generated using rotation from fewer than 3 times
(since such objects likely do not represent sustained rota-
tion). To determine whether a reflectivity object contains
strong sustained rotation, rotation objects are sought within
a square domain centered on the reflectivity object centroid.
The diameter of the search domain is set to the greater of
12 km and one-third of the equivalent diameter of the re-
flectivity object.

Ini�al storm object 
extrac�on

Threshold composite reflec�vity

Rota�on object extrac�on

Ini�al storm object QC
Remove �ny objects

Merge proximate objects
Discard if max dBZ < threshold

Rota�on object QC
Merge proximate objects

Remove �ny objects
Temporal con�nuity threshold

Storm object extrac�on & QC
Weaker QC criteria

dbz_thres += 1

NO

Iden�fy embedded objects

Discard smaller versions of 
parent objects

Composite 
reflec�vity

(START)

Classified storm 
objects
(END)

UH or AzShr
(START)

Generate 30-min composites

Classifica�on 
Scheme

Final storm object QC & 
reclassifica�on

Classifica�on 
Scheme

dbz_thres =
max_thres?

YES

Rota�on 
objects

Storm 
objects

FIG. 1. Flowchart for storm object segmentation algorithm.
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d. Constituent storm objects

To identify any CELLs contained within the objects identi-
fied in the first step, we iterate the object segmentation and clas-
sification, with the CREF threshold (initially 43 and 39 dBZ for
WoFS and MRMS objects, respectively) incremented by 1 dBZ
for each of 20 iterations (Fig. 1). Candidate new objects are
identified at each iteration using a minimum area threshold of
10 grid cells (90 km2), with no subsequent object merging.
These settings make allowance for the typically small size of,
and narrow separation between, CELLs that are clustered to-
gether or embedded within QLCSs. New objects are retained if

they exist within a previously identified (parent) object. The
new objects are preliminarily classified in the same manner as
the initial objects (Fig. 2a). Objects not classified as CELLs are
discarded since we aim to identify only the individual cells con-
stituting parent objects (e.g., we do not wish to identify subclus-
ters of cells within larger-scale clusters).

Since the CREF threshold is increased with each iteration,
many of the candidate objects will merely be smaller versions
of CELL objects identified in previous iterations. We found
that in such cases, the centroids of the parent CELL and can-
didate objects are typically nearly collocated. Thus, at the end
of each iteration, we discard objects contained within previously

NO

a) Preliminary storm classifications

NOYES

YES

NO

YES

NO

b) Final multicellular classifications

c) Final cell classifications

QLCS

area < 100 km2 or
(area < 200 km2 and

eccentricity < 0.7 and
solidity > 0.7)?

YESYESCELL

length > 
75 km?

OTHER eccentricity 
< 0.9?

eccentricity 
> 0.97?

NO

CELL

NO

YES

YES NO

length > 
150 km?

QLCS YES NO

eccentricity > 0.93 or
area > 500 km2 or
length > 75 km or

solidity < 0.7?

Storm objects
(START)

OTHER

CELL

NOYES

QLCS OTHER

QLCS

Cells 
compose > 

75 % of 
area?
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FIG. 2. Flowcharts for storm classification algorithm: (a) Preliminary classification (prior to final
iteration), (b) final multicellular classification, and (c) final cellular classification. Green and yellow
shading signifies preliminary and final classifications, respectively.
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identified CELLs if the distance between their two centroids is
less than 15% of the equivalent diameter of the parent CELL
or less than 6 km.

e. Final quality control and classification

Following the final iteration of the storm segmentation and
classification algorithm, we perform a series of quality control
(QC) and reclassification steps that account for constituent
CELLs and their parent objects (“Final storm object QC &
reclassification” in Fig. 1). To facilitate this procedure, each
CELL’s parent object (if one exists) is identified, and then the
“generation” of each object is determined. Unembedded
storm objects are assigned to generation 0, objects within
those objects to generation 1, and so forth. In the first step of
the final QC and reclassification procedure, CELLs contained
within QLCS-embedded CELLs are discarded. Then each
QLCS with length , 150 km and whose constituent CELLs
compose . 75% of the QLCS area is reclassified as a
SUP_CLUST if it contains multiple rotating CELLs or
OTHER if it does not (Fig. 2b). Next, CELLs embedded
within OTHERs are examined, beginning with the
“deepest” objects (typically generation 2 or 1) and progressing
to unembedded objects (generation 0). If a singleton CELL is
embedded within an OTHER or CELL, it is discarded; if the
parent object is an OTHER, it is reclassified as a CELL. If
multiple objects are embedded within an unembedded CELL,
the CELL is reclassified as an OTHER or SUP_CLUSTER. If
multiple objects are embedded within an embedded OTHER
or CELL, the latter is discarded since we do not wish to classify
multicellular objects within larger-scale multicellular objects.
Upon treating all instances of OTHERs with embedded CELLs,
unembedded CELLs with length . 75 km, solidity1 , 0.7, or
eccentricity. 0.97 are reclassified as OTHER. Finally, CELLs are
assigned their final classifications (ORDINARY, SUPERCELL,
QLCS_ORD, or QLCS_MESO) based on whether they are em-
bedded within a QLCS and whether they are associated with ro-
tation objects (Fig. 2c). Identifying and classifying all MRMS or
WoFS (for a single member) storms within a 900 km 3 900 km
region at a single time average around 1 min on a single Intel
Xeon 6140 CPU (2.30-GHz base frequency).

The benefit of the iterative approach is illustrated in Fig. 3. The
initial storm segmentation procedure, which is essentially the
fixed-threshold method, correctly identifies all of the intense con-
vection in the image, but is incapable of identifying the individual
cells constituting the storm complexes (Fig. 3a). Upon iterating
through all the reflectivity thresholds and performing the final QC
and classification, numerous QLCS-embedded cells have been
identified and classified, as have two ORDINARY cells within a
cluster near the northeastern corner of the domain (Fig. 3b).

4. Survey-based evaluation of classification algorithm

The storm classification algorithm was evaluated using ex-
pert labels of 400 storms collected by surveys created using the

Qualtrics software. Before describing the details of the final
surveys (section 4b) and evaluations (section 4c), we discuss
the motivation for key aspects of our survey design.

a. Survey design considerations

A major limitation of our classification algorithm is that it
operates on a single snapshot of the CREF field, and on
sparse temporal information about rotation. This limitation
increases misclassification of storms that temporarily exhibit
features of different modes. Human experts, on the other
hand, routinely examine storm evolution while assessing
storm mode. Therefore, to obtain expert labels that more
fairly evaluate the algorithm, we include animations of CREF
and rotation in the surveys.

However, even when provided with detailed information
about storm evolution, two experts can reasonably classify the
same storm differently. To accommodate this frequent ambigu-
ity in storm mode, we had multiple experts complete each sur-
vey, then accounted for the degree of consensus in the expert
labels when evaluating the classification algorithm (section 4c).
We could alternatively have assigned each storm to a single re-
spondent and asked them to quantify their uncertainty in their
classification. The primary advantage of that approach would
have been to multiply the number of expert-labeled storms.
However, the advantages of our approach include reducing the
workload for each respondent, and generating an ensemble of
expert labels of each storm, thereby enabling analysis of the de-
gree of subjective agreement on storm mode. Sobash et al.
(2021) combined both approaches in their classification algo-
rithm evaluation: multiple experts classified each storm and
quantified their uncertainty in their classification.

Several preliminary versions of the classification survey
were completed by a group of convective storm experts (all of
them coauthors). These expert labels and subsequent discus-
sions were used to iteratively refine the classification scheme,
including the choices of storm modes and their definitions, as
well as the survey design. Limiting the number of storm mode
options and clarifying the definitions of each were critical to
achieving expert consensus in a reasonably large proportion
of cases. In the preliminary survey, the degree of expert
agreement with each other and with the algorithm classifica-
tions was found to substantially increase as the respondents
labeled more storms, indicating a nontrivial learning curve for
survey respondents. To mitigate this ordering effect on ex-
perts’ subjective classifications in the final surveys, the ques-
tion order was randomized for each respondent, thus
reducing the odds that a given storm was labeled by all or
most of the respondents while they were still in their “warm-
up” period.

b. Final survey design

The storms for the final surveys were automatically selected
from the set of 2017 SFE objects, which were minimally used
in the algorithm development. Four surveys were created,
each with a unique set of 100 storm objects for labeling, for
a total of 400 storms. We chose to deploy four surveys with
100 storms rather than one survey with 400 storms to reduce

1 The ratio of the storm object area to the area of the convex
hull (i.e., smallest convex polygon enclosing the storm object).
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the workload on each survey participant. To help ensure a
sufficiently large evaluation sample for each storm mode, a
quasi-arbitrary number of each algorithm-assigned mode
was randomly selected from both the WoFS and MRMS
datasets for each survey: 9 ORDINARY, 9 SUPERCELL,
7 QLCS, 7 SUP_CLUST, 5 QLCS_ORD, 5 QLCS_MESO,
and 8 OTHER. For each storm, respondents were presented
with a plot of the CREF field and the 30-min composite ro-
tation objects (section 3c) valid over the 250-km domain
centered on the storm of interest, which was prominently in-
dicated (Fig. 4). Respondents were not informed whether

each storm came from the WoFS or the MRMS dataset. To
allow the respondents to incorporate information about
storm evolution into their label selection, animations of
CREF and instantaneous rotation exceeding a threshold
(section 3c) were shown on both sides of the static plot,
each valid from 60 min before to 30 min after the storm clas-
sification time. The left (right) animation showed images
valid every 15 (5) min. The respondents were prompted to
select the storm mode from a multiple-choice menu contain-
ing detailed definitions of each mode. Survey instructions,
including examples of each storm mode, were provided both

FIG. 3. Demonstration of the storm segmentation and classification algorithm. CREF (dBZ) is
shaded in both panels. (a) Storm objects identified in the first step of the algorithm, indicated by
darker shading and magenta contours. (b) The final output of the algorithm, with storm objects
indicated by darker shading, and embedded objects indicated by the darkest shading and their
mode labeled (SUP5 SUPERCELL, ORD5ORDINARY).
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at the beginning of the survey and as a linked document
within each question.

The survey was advertised via email to communities with
expertise in convective meteorology. A survey link was sent to

interested individuals who were not involved with the algo-
rithm development, have expertise in convective meteorology,
and identified as an NWS forecaster, research scientist,
or graduate student. The surveys were anonymous; the only

FIG. 4. Sample question from the final surveys. (top) CREF (shading) and intense rotation (black
outlines), with (center) the storm to be classified outlined in magenta. The top-left and top-right pan-
els are animated in the surveys to show storm evolution shortly before and after classification time.
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participant information collected was professional status (fore-
caster, scientist, or student). A total of 29 individuals com-
pleted a survey: 17 forecasters, 10 researchers, and 2 students
(Table 3). The majority of individuals completing each survey
were forecasters. All participants signed an electronic in-
formed consent form prior to completing this survey. This
study was approved under the University of Oklahoma’s
Institutional Review Board (Project 13364).

c. Evaluating the storm classification algorithm

As noted previously, storm mode is often ambiguous, making
verification of classification schemes challenging. Our solution
was to discard storms for which there was no respondent con-
sensus, initially defined herein as a simple majority (four experts
agreeing in surveys 1 and 4, and five experts agreeing in surveys
2 and 3; Table 3). We could have adopted a stronger consensus
threshold to improve the accuracy of the storm mode labels
used for verification, but this may also have produced an overly
optimistic view of the algorithm classification accuracy by biasing
the verification toward storms exhibiting more obvious modes.
Using the simple-majority threshold, consensus was achieved on
265 of the 400 storms (66%), yielding a robust sample for verifi-
cation (Table 4). The algorithm classifications matched the con-
sensus for 70% of the verification storms. Averaged across all
respondents, individual classifications matched the consensus for
79% of the verification storms. Thus, the algorithm deviated
from the expert consensus only moderately more often than did
individual experts. Given the relatively small samples of storms
of each mode, and the uncertainty in the “true” mode in cases
where consensus was barely obtained among the respondents,
these verification statistics should not be interpreted too literally.
Nevertheless, our results strongly suggest that the classification
algorithm is reasonably consistent with expert judgements of
storm mode. The rate of respondent consensus and algorithm
classification accuracy were similar for WoFS and MRMS storms
(72% versus 61%, and 73% versus 66%, respectively). The simi-
lar performance of the classification algorithm for WoFS and
MRMS storms suggests that it would perform similarly well for

other CAM and gridded radar datasets without excessive tuning
of the CREF-based criteria.

Restricting the verification to storms for which a majority of
the respondents selected the same mode excludes many storms
whose mode is more ambiguous (135 out of 400). Not only does
this shrink the verification sample, but excluding these ambigu-
ous storms potentially produces an overly optimistic view of the
classification accuracy. To mitigate these potential sampling
biases, we expanded the verification to include all storms as-
signed the same mode by at least three respondents. This “weak
consensus” approach yielded 389 storms for evaluation, versus
265 from the original approach. In those cases where one mode
received a plurality of respondent classifications, the “true”
mode was set to the plurality mode. When two modes were
selected by the same number of respondents and one of
the modes matched the algorithm classification, the “true”
mode was set to the latter; this tiebreaker was invoked for 26 of
the 124 new storms (21%). The inclusion of these more ambigu-
ous storms reduced the classification accuracy of the algorithm
from 70% to 64%, but the rate of agreement of individual re-
spondents with the consensus decreased by a similar margin:
from 79% to 72% (Table 4). With 97% of the surveyed 400
storms included in the expanded evaluation, we conclude that
the original evaluation well represents the consistency of the
classification algorithm with expert judgements of storm mode.

Since many applications do not require as many storm mode
distinctions as our scheme makes, we additionally evaluated the
algorithm using two different groupings of our seven storm
modes, each composed of four or three classes (Table 5). For
each of these schemes, we assigned the respondent and algorithm
classifications to their respective classes, then evaluated the new
labels as we did the original mode labels. Naturally, the classifica-
tion accuracy of the algorithm increased as the number of classes
decreased (Table 4). The 76% and 88% classification accuracy
for the four- and three-category schemes, respectively, strongly
recommend the algorithm for high-level storm mode classifica-
tion. Since the expert consensuses for the 3- and 4-class schemes
were determined by remapping the original (7-class) expert la-
bels, however, these verification results should be interpreted
with caution.

Contingency-table-based verification statistics were com-
puted for each storm mode for each of the classification
schemes (Table 6). The three chosen statistics}true skill
statistic (TSS; Hanssen and Kuipers 1965), Gilbert skill
score (GSS; Gilbert 1884), and Heidke skill score (HSS;
Wilks 2011)}are well suited to rare events forecasting since
they account for correct forecasts due to random chance.
Confusion matrices (Wilks 2011) were also generated for
each of the classification schemes (Figs. 5 and 6). Row- and

TABLE 3. Number of participants completing each survey by
professional status.

Forecasters Researchers Students Total

Survey 1 3 2 1 6
Survey 2 5 2 1 8
Survey 3 5 3 0 8
Survey 4 4 3 0 7
Totals 17 10 2 29

TABLE 4. Rate of expert consensus, average individual agreement with consensus, and algorithm agreement with consensus.

Classification scheme Respondent consensus Respondent agreement with consensus Algorithm accuracy

7-class 66% 79% 70%
7-class, weak consensus 97% 72% 64%
4-class } } 76%
3-class } } 88%
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column-normalized confusion matrices were similar for the origi-
nal and weak-consensus evaluations of the 7-class scheme (not
shown). Examination of the verification statistics and confusion
matrices reveals that the algorithm generally better classifies or-
ganized than disorganized storm modes. More specifically, in
the 7-class scheme, QLCS, SUPERCELL, and SUP_CLUST are
better classified than OTHER and QLCS_ORD, and in the
3- and 4-class schemes, ORG_MULTICELL are better classified
than OTHER. The confusion matrices are particularly useful in
highlighting common pitfalls of the classification algorithm. For
example, for the 7-class scheme, ORDINARY storms are often
misclassified as QLCS_ORD or OTHER, OTHER as QLCS,
and QLCS_ORD as ORDINARY or OTHER (Fig. 5). Inspec-
tion of individual cases reveals typical reasons for these recurring
misclassifications. For example, the frequent misclassification of
ORDINARY as QLCS_ORD (Fig. 5), and of DISCRETE as
QLCS_EMBED (Fig. 6), arises from the frequent proximity of
discrete cells to QLCS (not shown). Given the large differences
in classification accuracy between modes, the overall accuracy of
the classification algorithm will be sensitive to the storm mode
distribution of a particular dataset.

5. Conclusions and future work

We have presented an iterative storm segmentation and
classification algorithm for use with CAM and gridded radar
data. The algorithm requires only composite reflectivity and
rotation (midlevel updraft helicity or MRMS azimuthal shear)
fields as input. The algorithm identifies a wide range of in-
tense storms, most notably, cells embedded within storm clus-
ters or QLCS. Storms are assigned one of seven modes that
were selected with severe weather operations and research
applications in mind. Based on evaluations with multiple ex-
pert labels of 400 storms, the classification algorithm agrees
reasonably well with expert judgements of storm mode. Given
the small number of inputs required for the technique, and its
similarly good performance for both WoFS and MRMS data,
we expect it could be valuably applied to other CAM and
gridded radar datasets without excessive modifications.

The evaluation of our classification scheme could be ex-
tended in at least three ways. First, increasing the number of la-
beled storms would enable new analyses, including rigorous
comparisons of the classification accuracy for WoFS versus
MRMS storms. Second, it would be valuable to assess how well
the algorithm classifies storms during rapid mode transition

(e.g., upscale growth), during which storms can exhibit traits of
both the start and end modes. Third, given the fundamental dif-
ferences between simulated updraft helicity and radar-derived
azimuthal shear, it would be helpful to systematically assess the
intercomparability of our WoFS and MRMS rotation objects,
perhaps using observing system simulation experiments.

It might be possible to improve the classification accuracy
by incorporating additional fields that can be calculated from
both CAM and gridded radar data, such as low-level rotation,
reflectivity at various altitudes (e.g., Starzec at al. 2017), and
echo-top height. Storm attributes from a series of times could
also be used to capture aspects of storm evolution that experts
find valuable for classifying mode. A machine learning (ML) ap-
proach (e.g., Gagne et al. 2009; Lack and Fox 2012; Jergensen
et al. 2020; Sobash et al. 2021) would greatly facilitate any sub-
stantial expansion of the feature set, since manual development
of complex decision trees is time-consuming. It may not be trivial
to develop a ML model that outperforms the present technique,
however. While expanding the feature set to include additional
types of information should promote higher classification accu-
racy, the number of expert-labeled storms required for training,
hyperparameter tuning, and testing may well exceed the 400
samples we have already collected. This highlights an important
trade-off between ML and manual approaches to certain super-
vised learning problems (i.e., training a machine learning model
on labeled datasets): the ML approach can reduce the time spent
on model development, but also requires a much larger total hu-
man time investment (to gather the requisite labels) to outper-
form traditional methods. On the other hand, ML models can
provide uncertainty estimates for their predictions, which are
particularly useful in classification problems like ours where the

TABLE 6. Verification statistics for algorithm classifications of
each storm mode. TSS and HSS can range from 21 to 1, and
GSS from 21/3 to 1. For each of these three statistics, a score of
zero indicates no skill. The no-skill threshold for the
classification accuracy (ACC) is 1/7, 1/4, and 1/3 for the 7-class,
4-class, and 3-class schemes, respectively.

Mode TSS GSS HSS ACC

7-class scheme
QLCS 0.77 0.54 0.71 0.82
SUPERCELL 0.72 0.59 0.74 0.76
SUP_CLUST 0.68 0.54 0.70 0.72
QLCS_MESO 0.65 0.52 0.68 0.67
ORDINARY 0.64 0.49 0.66 0.70
OTHER 0.51 0.33 0.49 0.60
QLCS_ORD 0.51 0.30 0.46 0.57

4-class scheme
ORG_MULTICELL 0.82 0.68 0.81 0.88
DISCRETE 0.68 0.53 0.69 0.78
QLCS_EMBED 0.59 0.40 0.57 0.68
OTHER 0.51 0.32 0.49 0.60

3-class scheme
CELLULAR 0.89 0.78 0.87 0.93
ORG_MULTICELL 0.83 0.69 0.82 0.88
OTHER 0.52 0.33 0.50 0.60

TABLE 5. Storm modes in 4-class and 3-class schemes.

4-class scheme
ORG_MULTICELL QLCS, SUP_CLUST
DISCRETE ORDINARY, SUPERCELL
QLCS_EMBED QLCS_ORD, QLCS_MESO
OTHER OTHER

3-class scheme
CELLULAR ORDINARY, SUPERCELL,

QLCS_ORD, QLCS_MESO
ORG_MULTICELL QLCS, SUP_CLUST
OTHER OTHER
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targets often do not fit neatly into a single class. Given that
many storms do not exhibit a well-defined mode, as evidenced
by the lack of expert agreement on many of the storms in the
classification surveys, the deterministic nature of our algorithm’s
classifications limits its value to certain applications.

We are considering a variety of potential WoFS applica-
tions of the new algorithm. One is to provide real-time fore-
cast guidance on the evolution of storms and attendant
hazards: for example, the number of ensemble members that
are predicting a storm cluster to grow upscale into a QLCS, or
for a nonrotating storm to become a supercell. Another poten-
tial application is to incorporate storm mode as a new feature in
existing WoFS-based ML models for predicting storm hazards
(Flora et al. 2021; Chmielewski et al. 2021), and in future ML
models (in development) for estimating uncertainty of WoFS
forecasts of individual storms. Stratifying the verification of
large sets of WoFS forecasts by storm mode would provide
valuable information for real-time interpretation, and about the
relative practical predictability of different modes. Finally,
objective storm classifications would facilitate intermode
comparisons of near-storm environments, CAM perfor-
mance, and the risks of thunderstorm hazards.
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